Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Dis Markers ; 2022: 1118195, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2138216

RESUMEN

Background: Mitochondria have been involved in host defense upon viral infections. Factor Xa (FXa), a coagulating factor, may also have influence on mitochondrial functionalities. The aim was to analyze if in human pulmonary microvascular endothelial cells (HPMEC), the SARS-CoV-2 (COVID-19) spike protein subunits, S1 and S2 (S1+S2), could alter mitochondrial metabolism and what is the role of FXA. Methods: HPMEC were incubated with and without recombinants S1+S2 (10 nmol/L each). Results: In control conditions, S1+S2 failed to modify FXa expression. However, in LPS (1 µg/mL)-incubated HPMEC, S1+S2 significantly increased FXa production. LPS tended to reduce mitochondrial membrane potential with respect to control, but in higher and significant degree, it was reduced when S1+S2 were present. LPS did not significantly modify cytochrome c oxidase activity as compared with control. Addition of S1+S2 spike subunits to LPS-incubated HPMEC significantly increased cytochrome c oxidase activity with respect to control. Lactate dehydrogenase activity was also increased by S1+S2 with respect to control and LPS alone. Protein expression level of uncoupled protein-2 (UCP-2) was markedly expressed when S1+S2 were added together to LPS. Rivaroxaban (50 nmol/L), a specific FXa inhibitor, significantly reduced all the above-mentioned alterations induced by S1+S2 including UCP-2 expression. Conclusions: In HPMEC undergoing to preinflammatory condition, COVID-19 S1+S2 spike subunits promoted alterations in mitochondria metabolism suggesting a shift from aerobic towards anaerobic metabolism that was accompanied of high FXa production. Rivaroxaban prevented all the mitochondrial metabolic changes mediated by the present COVID-19 S1 and S2 spike subunits suggesting the involvement of endogenous FXa.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Factor Xa/metabolismo , SARS-CoV-2 , Células Endoteliales/metabolismo , Subunidades de Proteína/metabolismo , Rivaroxabán/farmacología , Rivaroxabán/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Mitocondrias/metabolismo
2.
Am J Cardiovasc Drugs ; 20(6): 525-533, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-755898

RESUMEN

Human factor Xa (FXa) is a serine protease of the common coagulation pathway. FXa is known to activate prothrombin to thrombin, which eventually leads to the formation of cross-linked blood clots. While this process is important in maintaining hemostasis, excessive thrombin generation results in a host of thrombotic conditions. FXa has also been linked to inflammation via protease-activated receptors. Together, coagulopathy and inflammation have been implicated in the pathogenesis of viral infections, including the current coronavirus pandemic. Direct FXa inhibitors have been shown to possess anti-inflammatory and antiviral effects, in addition to their established anticoagulant activity. This review summarizes the pharmacological activities of direct FXa inhibitors, their pharmacokinetics, potential drug-drug interactions and adverse effects, and the details of clinical trials involving direct FXa inhibitors in coronavirus disease 2019 (COVID-19) patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/fisiopatología , Inhibidores del Factor Xa/farmacología , Inhibidores del Factor Xa/uso terapéutico , Coagulación Sanguínea/efectos de los fármacos , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/fisiopatología , Citocinas/biosíntesis , Interacciones Farmacológicas , Factor Xa/metabolismo , Inhibidores del Factor Xa/efectos adversos , Inhibidores del Factor Xa/farmacocinética , Semivida , Humanos , Mediadores de Inflamación/metabolismo , Tasa de Depuración Metabólica , Insuficiencia Multiorgánica/fisiopatología , Insuficiencia Multiorgánica/prevención & control , Pandemias , Unión Proteica/fisiología , SARS-CoV-2 , Índice de Severidad de la Enfermedad
4.
Molecules ; 25(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: covidwho-436971

RESUMEN

The coronavirus disease, COVID-19, caused by the novel coronavirus SARS-CoV-2, which first emerged in Wuhan, China and was made known to the World in December 2019 turned into a pandemic causing more than 126,124 deaths worldwide up to April 16th, 2020. It has 79.5% sequence identity with SARS-CoV-1 and the same strategy for host cell invasion through the ACE-2 surface protein. Since the development of novel drugs is a long-lasting process, researchers look for effective substances among drugs already approved or developed for other purposes. The 3D structure of the SARS-CoV-2 main protease was compared with the 3D structures of seven proteases, which are drug targets, and docking analysis to the SARS-CoV-2 protease structure of thirty four approved and on-trial protease inhibitors was performed. Increased 3D structural similarity between the SARS-CoV-2 main protease, the HCV protease and α-thrombin was found. According to docking analysis the most promising results were found for HCV protease, DPP-4, α-thrombin and coagulation Factor Xa known inhibitors, with several of them exhibiting estimated free binding energy lower than -8.00 kcal/mol and better prediction results than reference compounds. Since some of the compounds are well-tolerated drugs, the promising in silico results may warrant further evaluation for viral anticipation. DPP-4 inhibitors with anti-viral action may be more useful for infected patients with diabetes, while anti-coagulant treatment is proposed in severe SARS-CoV-2 induced pneumonia.


Asunto(s)
Anticoagulantes/química , Antivirales/química , Betacoronavirus/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Anticoagulantes/farmacología , Antivirales/farmacología , Betacoronavirus/química , Betacoronavirus/enzimología , Betacoronavirus/genética , Sitios de Unión , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Factor Xa/química , Factor Xa/genética , Factor Xa/metabolismo , Hepacivirus/química , Hepacivirus/enzimología , Hepacivirus/genética , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Neumonía Viral/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato , Termodinámica , Trombina/antagonistas & inhibidores , Trombina/química , Trombina/genética , Trombina/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
5.
Med Hypotheses ; 142: 109743, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-88380

RESUMEN

Currently, our world is facing the 2019 Novel Coronavirus (COVID-19) outbreak and tremendous efforts are made for developing drugs to treat and vaccines to prevent the disease. At present, there is no specific antiviral drug or vaccine for COVID-19. The pathogenic infectivity of the virus requires the S1 subunit of the spike (S) protein to bind the host cell receptor, angiontensin converting enzyme (ACE2). While the binding to host cell receptor is the first step of infection, the entrance of the virus into the cell needs the cleavage of S1-S2 subunits to expose S2 for fusion to cell membrane via host proteases including cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, trypsin and factor Xa. Previous in vitro studies have shown that factor Xa inhibition can decrease viral infectivity. We suppose that host cell proteases including furin (as expressed highly in lungs), factor Xa and cathepsin are possible targets to decrease viral burden, therefore unfractioned heparin and low molecular weight heparin-LMWH (specifically dalteparin and tinzaparin for their anti inflammatory action) can be potential inhibitors of multiple endoproteases involved in virus infectivity. Our hypothesis needs to be tested in in vitro and clinical studies, however as we are in an urgent situation as the burden of SARS-CoV2 is increasing all around the world, we recommend the usage of unfractioned heparin or LMWH in intensive care unit (ICU) and non-ICU hospitalized patients with the risk-benefit judgement of the clinician. Whether our hypothesis is clinically applicable and successful in decreasing viral infection will be evaluated for further studies.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Heparina de Bajo-Peso-Molecular/farmacología , Heparina/farmacología , Neumonía Viral/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , COVID-19 , Infecciones por Coronavirus/sangre , Esquema de Medicación , Factor Xa/metabolismo , Humanos , Modelos Teóricos , Pandemias , Neumonía Viral/sangre , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA